MINVO Basis: Finding Simplexes with Minimum Volume Enclosing Polynomial Curves

نویسندگان

چکیده

This paper studies the polynomial basis that generates smallest n-simplex enclosing a given nth-degree curve in Rn. Although Bernstein and B-Spline bases provide feasible solutions to this problem, simplexes obtained by these are not possible, which leads overly conservative results many CAD (computer-aided design) applications. We first prove solves problem (MINVO basis) also for with largest convex hull enclosed n-simplex. Then, we present formulation is independent of or given. By using Sum-Of-Squares (SOS) programming, branch bound, moment relaxations, obtain high-quality any n∈N, (numerical) global optimality n=1,2,3 local n=4. The n=3 show that, 3rd-degree R3, MINVO able an simplex whose volume 2.36 254.9 times smaller than ones bases, respectively. When n=7, ratios increase 902.7 2.997⋅1021,

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Volume Enclosing Ellipsoids

Two different methods for computing the covering ellipses of a set of points are presented. The first method finds the optimal ellipsoids with the minimum volume. The second method uses the first and second moments of the data points to compute the parameters of an ellipsoid that covers most of the points. A MATLAB software is written to verify the results.

متن کامل

Minimum Volume Enclosing Ellipsoids and Core Sets

Abstract. We study the problem of computing a (1 + )-approximation to the minimum volume enclosing ellipsoid of a given point set S = {p1, p2, . . . , pn} ⊆ Rd. Based on a simple, initial volume approximation method, we propose a modification of Khachiyan’s first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd3/ ) operations for ∈ (0, 1). As a byproduct, our ...

متن کامل

Minimum-Volume Enclosing Ellipsoids and Core Sets1

We study the problem of computing a (1 + )-approximation to the minimum volume enclosing ellipsoid of a given point set S = {p, p, . . . , p} ⊆ R. Based on a simple, initial volume approximation method, we propose a modification of Khachiyan’s first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd/ ) operations for ∈ (0, 1). As a byproduct, our algorithm retur...

متن کامل

Computing Minimum-Volume Enclosing Axis-Aligned Ellipsoids

Given a set of points S = {x1, . . . , xm} ⊂ R and > 0, we propose and analyze an algorithm for the problem of computing a (1 + )-approximation to the minimum-volume axis-aligned ellipsoid enclosing S . We establish that our algorithm is polynomial for fixed . In addition, the algorithm returns a small core set X ⊆ S , whose size is independent of the number of points m, with the property that ...

متن کامل

Approximate Minimum Volume Enclosing Ellipsoids Using Core Sets

We study the problem of computing the minimum volume enclosing ellipsoid containing a given point set S = {p1, p2, . . . , pn} ⊆ R. Using “core sets” and a column generation approach, we develop a (1 + )-approximation algorithm. We prove the existence of a core set X ⊆ S of size at most |X| = α = O ( d ( log d + 1 )) . We describe an algorithm that computes the set X and a (1 + )-approximation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Aided Design

سال: 2022

ISSN: ['1879-2685', '0010-4485']

DOI: https://doi.org/10.1016/j.cad.2022.103341